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J. Phys. A: Math. Gen. 13 (1980) 1651-1663. Printed in Great Britain 

The perturbed ladder operator method: closed form 
expressions of perturbed wavefunctions and matrix 
elements 

N Bessis, G Bessis and G Hadinger 
Laboratoire de Spectroscopie et de Luminescence, UniversitC Claude Bernard, Lyon I, 43, 
Boulevard du 11 Novembre 1918,69622 Villeurbanne, France 

Received 21 March 1979. in final form 26 October 1979 

Abstract. By mapping the perturbation scheme onto the ladder operator formalism, the 
field of application of the Schrodinger-Infeld-Hull factorisation method is enlarged. It is 
shown how, at each order of the perturbation, perturbed ladder operators can be 
constructed. Thus, without having to calculate explicitly either the excited unperturbed 
functions or any matrix element, one obtains analytical expressions of the perturbed 
eigenvalues in terms of the quantum numbers of the factorisable unperturbed problem. A 
three-terms recurrence relation, valid at any rank of the perturbation, is derived and leads to 
closed form expressions of the perturbed eigenfunctions. Consequently, a closed form 
expression of any matrix element on the basis of the perturbed eigenfunctions is easily 
obtained from the calculation of one unique particular integral. It is shown how the method 
can be applied to the resolution of wave equations with the potentials 

V(x) = [ - d 2  exp(2ax)+2ad(m +:) exp(ax)]+d, exp(3ax)+. . .+ d, exp(Sax) 

V(x)={-[m(m+ 1)]/x2-- bZxZ}+b2x4+. . .+bsxzs 

V(x) = [ -(bx + d)’- b(2m + 1)]+ b,(bx + d ) 3 + .  . . + b,(bx + d)’ 

V(x) = { - [ m ( m +  l ) ] / x 2 - 2 ~ / x } + b , x + b Z r 2 + .  . .+bsxS 

which correspond to the unperturbed Infeld-Hull types B, C, D and F, respectively. 

1. Introduction 

In a previous paper (Bessis et a1 1978, to be referred to as I) a novel method of 
resolution of perturbed eigenequations has been proposed. Indeed, by mapping the 
perturbation scheme onto the ladder operator formalism, one generates the ‘perturbed 
ladder operator’ procedure which oversteps the narrow bounds of applicability of the 
Schrodinger-Infeld-Hull factorisation method (Schrodinger 1940, Infeld and Hull 
195 1). It has been shown how, when starting from an unperturbed problem leading to a 
factorisable equation, one can build up ‘perturbed ladder operators’ together with 
‘perturbed factorisation functions’, allowing the factorisation of the perturbed equation 
at any rank of the perturbation. Hence, one finds again the well-known advantages of 
the exact factorisation scheme: one obtains, without having to calculate any matrix 
element, analytical expressions of the perturbed eigenvalues in terms of the quantum 
numbers and, also, analytical expressions of the perturbed eigenfunctions by successive 
application of the perturbed ladder operators. Of course, to each type of factorisation 
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1652 N Bessis, G Bessis and G Iiadinger 

associated with the unperturbed potential correspond specific expressions for the 
perturbed ladder and factorisation functions. Thus, for the generalised central field 
problem, corresponding to the unperturbed Infeld-Hull type F, expressions of the 
ladder and factorisation functions have been given (see I).  

In the present paper, the remaining radial types of factorisation (types B, C and D) 
are investigated. Moreover, we have reconsidered the determination of perturbed 
wavefunctions and found a three-terms recurrence relation which allows, for all types 
(A-I?), a straightforward determination of the perturbed wavefunctions at any rank of 
the perturbation. The advantages of the method are pursued to the determination of 
closed form expressions of any matrix element of a Hermitian operator between 
perturbed eigenfunctions in terms of one unique integral which, in most cases, is 
obtainable from tables. As an illustrative example, our procedure is applied, up to the 
second order of the perturbation, to the determination of analytical expressions of the 
generalised central field wavefunctions and closed form expressions of the ( r k )  matrix 
elements between these functions. 

2. The perturbed ladder operator scheme 

Let us consider a second-order differential eigenequation which has been reduced to 
the standard form 

associated with the boundary conditions (xl =G x S x2) 

where m = mo, mo+ 1, mo+ 2, . . . is a quantum number which takes successive discrete 
values labelling the eigenfunctions. In most problems of physical interest, the potential 
function %(x, m) in (1) does not belong to any of the six Znfeld-Hull factorisable types 
but one can assume that it is possible to expand it in a perturbation series with a 
parameter q, 

%(x, m )  = U ‘ O ’ ( X ,  m )  + .rlU‘”(X, m )  + . . . + .rlNU”’(X, m),  (3) 

in such a way that the wave equation (1) with U“”(x, m )  is factorisable. With that 
condition, it has been shown (see I) how one can build up the two perturbed ‘factorisa- 
tion instruments’, i.e. the perturbed ladder function X ( x ,  m )  and the perturbed 
factorisation function 5?(m), allowing the factorisation of the perturbed equation (1) up 
to any order N of the perturbation: 

N ( N I  rqx, m )  = K ‘ O ’ ( X ,  m) + 7 # P ( X ,  m )  + . . . + q K (x, m) 

(4) ~(m)=L‘O’(m)+.rlL‘’)(m)+...+77 N L iNJ (m) 

where Mi’’ and L“’ are the ladder and factorisation functions of the wave equation (I)  
with U“’. The expressions of K‘”’, L‘”’ are obtained recursively, i.e. when considering 
the determination of K ( N ) ,  L‘“’ and UiN’ it is assumed that all the K‘”’, for v =  
1,2, . . . , N -- 1, have already been found. The generation procedure of these pertur- 
bed ‘factorisation instruments’ has been already outlined and, in particular, applied to 
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the Coulombic case (type F) in I. Hereafter it is applied to types B, C and D. Since this 
procedure remains roughly the same as for type F, details of calculations will not be 
reproduced here in extenso. Hence, we just briefly recall the main results for type F 
completed by the new results for types B, C and D. 

2.1. Perturbed type F 

Given the unperturbed type F, U'O'(x, m), K(')(x, m) and L"'(m) functions (see table 
l), let us first focus attention on the m dependence of the current U'"', K'"' and 
E'"'(v = 1, N ) .  One finds that, in order to satisfy the factorisability condition for 
equation ( l ) ,  up to a given order N of the perturbation, convenient expressions are 

S" L'"ym)= p ( u ) m 2 v  
U 

U = O  

where (;) are binomial coefficients. 

Table 1. Radial Infeld-Hull exact factorisation types. 

(7) 

Type U""(x, m )  K'"'(x, m )  L""(m) Range 

B - d Z e x p ( 2 a r ) + a d ( 2 m + 1 ) e x p ( a r )  - a m + d  exp(ar) - a 2 m 2  1-m, +CO[ 

m ( m  + 1) m 
b 2 x z - b ( 2 m  + I )  bx -+ 4bm YO, +4 ____-  

X 2  
C 

X 

D - (bx + d)'-  b (2m + 1) - ( b x + d )  + 2bm 1-(0, +4 

- q 2 / m 2  LO, +CO[ 
m ( m + l )  2q m q  

X 2  x x m 
-+- ______ F 

The y r ' ( x )  functions involved in ( 5 )  and ( 6 )  are then found to be solutions of a linear 
differential triangular system. Solving this system, one gets for the yl"'(x) polynomials 
in x of degree ( S ,  + 1 - v ) .  The set of coefficients of these polynomials depends on the 
set of the free constants pi" ( i  = 1, S, ;  T = 1, v): 

v + u  rl"'(X) = -- pl"' x-fil"'(x)- ( 2u  ) Y f L ( X )  
2v 1- 1 u = l  

The polynomial Ol"'(x) is given by 
2 u  

f i r ' (x )  = (L) I x2"wr'(x) dx 
X 
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where the w?’ (x )  derive from the data of the preceding orders of the perturbation and 
are defined by 
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U-1 s,+s,_T-I c K“’(x,  m)K”-”(x,  m )  = wl”’(x,m2u. 

The y?’(x)  can be calculated from (8), step by step, downwards for U = S,, S ,  - 1, . . . . It 
should be noted that when considering the first order of the perturbation w : ’ ( x )  = 0; 
thus Cl!,”(x) = 0. 

Once the first-order truncation S1 has been arbitrarily chosen, the value of S ,  is not 
free and is given by 

S , = v S 1 + v - l .  (1 1) 
Indeed the highest power of x in Cl?’ is completely predicted from the results of the 
preceding orders. 

Finally, since at each order v of the perturbation the y?’(x) functions are poly- 
nomial in x ,  the successive U‘”’(x) are also polynomials in x. Thus, owing to the x 
dependence of % ( x ,  m) the ‘perturbed type F’ ladder method can be applied to eigen- 
equations 

d2 
(dx 
T+ V(x, m)+ 

with 
m(mt-1 )  2q 

X 2  X 
V(x, m )  = - - -+b1x+b2x2+ .  . . 

Nevertheless, let us point out that, although the x dependence of V(x, m) is obviously 
the same as that of the perturbed type F % ( x ,  m ) ,  it is not so with the m dependence of 
the perturbative part of V(x, m). Indeed, the U‘”) contain powers of m(m + 1) 
(equation 5 )  and in order to identify V(x, m )  with % ( x ,  m), one has to resort to 
‘artificial’ or ‘embedded’ factorisation (Infeld and Hull 1951). In the same way as 
within the exact factorisation scheme, one considers the %(x ,  m )  potential as ‘embed- 
ded’ in a p-parametric potential function u(x, m, p )  which depends on a supplementary 
‘artificial’ parameter p such that u(x,  m, p =f(m))  = % ( x ,  m). Thus, the perturbed 
ladder and factorisation functions associated with u(x, m, p )  both depend on the 
parameter p and lead to p-parametric eigenvalues and eigenfunctions. Of course, at 
the end of the process, one merely sets p = f ( m )  and obtains the required eigenvalues 
and eigenfunctions + j , , , ( ~ ,  p =f(m)) .  

2.2. Perturbed type C 

Since any problem which can be treated as type B can also be treated as type C and vice 
versa, it is convenient to consider first type C problems. Then, these results will be used 
later for type B. 

Starting from the unperturbed type C U‘’), K‘O’ and L‘O’ (see table 1) the successive 
adequate expansions in m of the U‘”), K‘”’ and L‘”’ (v  = 1, N )  which enable one to 
satisfy the factorisability condition for equation (l), up to a given power N of the 
parameter q, are found to be 
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where U, = [$(S ,  - U - 113. 
The y f ’ ( x )  functions involved in ( 1 4 )  and (15 )  are then found to be solutions of a 

linear differential triangular system. Solving this system, one gets for the y?’(x) 
polynomials in x of degree ( 2 S ,  - 271 + 1)  obtainable sequentially (for U = S,, S ,  - 1, . . .) 
from the following expression: 

- 1 ~ x ” + ’ d x ( 2 6 ( u + l ) y : ‘ : l +  C U :, [-o( 2uu v + 2 u  2u ) 7 y u + z u  1 (”) 

X U  u=l  

u + 2 u + l  
+ 2b( 2u + ) Y 2 z u + 1 ] )  ( 1 7 )  

where U: = [i(S, - U)]. 
The polynomial nl“’(x) is given by 

where the wl“’(x) derive from the data of the preceding orders of the perturbation and 
are defined by 

In the same way as for type F, once the first-order truncation S1 has been arbitrarily 
chosen, the value of the S ,  associated with the successive orders of the perturbation is 
now given by 

s, = V S ]  + 1 - v. (20 )  

At each order v of the perturbation the y f ’ ( x )  functions are odd polynomials in 
x ,  the successive U‘”’(x) are then found to be even polynomials in x.  Consequently the 
perturbed type C ladder operator method can be applied to any problem leading to the 
resolution of a second-order differential equation (12 )  with 

SN m(m + 1)  V ( x ,  m ) =  - - b2X2+ c bUX2’. 
X 2  u = 2  

Artificial factorisation is still useful in that case. 

2.3. Perturbed type B 

As pointed out before, in order to tackle ‘type B perturbed’ problems, it is convenient to 
use the connection between type B and C. 
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Let us consider a second-order differential equation involving an unperturbed 
potential function type B (see table 1) with an additive perturbative potential 

When introducing the following transformations of function and variable 
ar/2 x = e  

- 1  f 2  
+ J M =  x 4 j m  

the eigenequation (22) ( -  00 < r < + 00) is transformed into a type C eigenequation 
(0 C x < + 00). The correspondence between quantum numbers is 

m = 2 J + 3 + ~  

j =  J + M + $ + E  

with E = + 1 (or - 1) according to whether the type B factorisation function L"'(M) (see 
table 1)  is an increasing (or decreasing) function of M. Hence, previous results which 
have been obtained for type C can be used and thus the perturbed ladder operator 
method can be applied to any problem leading to the resolution of a second-order 
eigenequation (22) with 

SN 

W(r, M ) =  - d 2 e 2 a r + 2 a d ( M + ~ ) e " ' +  1 d, e""', 
v = 3  

2.4. Perturbed type D 

Starting from the unperturbed type D U''', K'O' and L'O' (see table l ) ,  it can be shown 
that the m dependence of the U"', K'"' and L'" functions is the same for type D as for 
type C (equations 14-16). The type D y;'(x) functions are given by 

v + 2 u + l  
- 2  (bx+d)dx  I u = l  

where U, = [$(S,  - U)], Cl"' is an integration constant and 

cR!,"'(x) = w C ' ( x )  dx. I 
The wiY'(x) are defined by the same expression (19) as for type C. Then the yl")(x) 

€unctions are polynomials in (bx + d) of degree (2S, - 2v + 1). The successive values of 
the S, are still defined by (20). Finally, the perturbed type D ladder operator method 
can be applied to any problem leading to the resolution of a second-order eigenequa- 
tion (12) with 

2 S N  

Y(x, m)= - ( b ~ + d ) ~ - b ( 2 m + l ) +  1 b,(bx+d)". 
u = 3  

Artificial factorisation is still useful in that case. 



The perturbed ladder operator method 1657 

3. Determination of perturbed eigenvalues and eigenfunctions 

Once the ‘factorisation instruments’ X ( x ,  m )  and 9 ( m )  have been obtained up to the 
Nth order of the perturbation (equation 4), one can apply the usual exact factorisation 
scheme. The total potential %(x, m) (equation 3) specific to each type of factorisation 
depends, via the y?’(x)  functions, on free constants ( v  = 1, S N ;  z, = 0, S , )  (see 
equations ( 5 )  and (8) for type F, equations (14) and (17) (or 26) for type C (or D)). One 
has first to compute these free constants pl“’ of %(x, m )  in terms of the b, constants of 
V(X ,  m )  which contain the physicai data of the problem under consideration. Since the 
perturbed parts U ( ” ) ( x ,  m )  of % ( x ,  m )  involve the quantum number m, one has to resort 
to ‘embedded’ factorisation, i.e. to introduce an artificial parameter p = m(m + 1) for 
type F (equation 5 )  or p = 21.n + 1 for types C and D (equation 14). 

Once the p:’ are calculated in terms of the b, and p, the exact factorisation scheme 
works. The eigenvalue is 8, = Z(j+ 1) (or 9 ( j ) )  for class I (or class 11) according to 
whether L“’(m) is an increasing (or decreasing) function of m. Then, one directly 
obtains, at any order N of the perturbation, the analytical expressions of the eigen- 
values Z?, in terms of the quantum numbers j and also m (via p = f(m)). 

For type F 

For type C 

For type D 

These expressions are given for class I problems. For class 11 problems one has to 
substitute ( j +  I )  by j .  

The cigenfunctions $;”’, at any order N of the perturbation, are solutions of the 
following pair of difference-differential equations: 

$;:’ = [ h j - 9 ( m - t - 1 ) ]  1/2 $ j m + l  ( N )  

with hi=9(j+ 1) (or Y(j))  for class I (or class 11) problems. The quantification 
condition j - m = integer a 0 (or m - j = integer 3 0) for class I (or class 11) problems 
ensures the existence of quadratically integrable solutions up to the Nth  order in 17. 

The equations (32) allow the determination of the Nth order perturbed $ ~ ~ ’ ( x )  
functions, step by step, starting from the ‘key function’ $;y) which is the solution of a 
first-order differential eigenequation: 

(class I) (33) 
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or 

(YC(X, j )  + - $: i” ’ (x)  = 0 (class 11). (34) dx d ,  

This procedure has been applied, in I, to the determination of analytical expressions of 
the generalised central field wavefunctions. 

Nevertheless, from a practical point of view, the use of a recurrence relation is found 
to be more efficient for the determination of wavefunctions. Now, from (32), the 
Nth-order perturbed eigenfunctions $;.E’ are seen to satisfy the following three-terms 
(non-differential) recurrence relation 

[~{(x, m) + Y~(x, m + 1)]$;,,N) = 4 m $ j E L l  +4m+lt,.$Eil (35) 

with 

4” = [ A j  - 9 ( m ) ] ” 2 .  (36) 

Starting from the key function $jy) which is a solution of the first-order differential 
eigenequation (33) or (34), this recurrence relation enables one to determine the 
Nth-order perturbed wavefunctions without having to calculate explicitly either the 
excited unperturbed functions or any matrix element. Indeed, as has been shown in I, 
after matching the given potential of the physical problem under consideration with the 
theoretical %(x, m) allowing perturbed factorisation, the ‘factorisation instruments’ 
YC(x, m) and 9(m) contain all the essential information following from the preceding 
orders of the perturbation via the P r ) ( b i ,  p)(v = 1 , 2 , .  . . , N -  1). Furthermore, if one 
starts from a normalised key function $:;IN), then the recurrence relation (35) generates 
normalised eigenfunctions (Ljz’. It is worthwhile to note that, according to the 
‘embedded’ factorisation scheme, the parameter p has to be given its true value 
p = f ( m )  but only within the final expression $;,E’(x, bi, p =f(m))  of the required 
function, i.e. not during the recurrence process. 

Let us introduce the shortened netation 

Q m  = N i A + i - t ( b , ,  .)E7{(x, m ;  bi, P )  + 7{(x, m + 1 ;  bi, 1111 
(37) 

hm = - ( . / V ; m + l / 4 m ) ‘ ( Q m Q m + E ) - ’  

where E = + 1  (or E = - 1 )  for class I (or class 11) problems according to the 
quantification condition ~ ( j  - m) = U = integer L 0. Then, the recurrence relation (35) 
is 

$ ; : l e  = Q m ( $ i E ’  + h m Q m + e $ j ’ E L e ) .  (38) 

For class I problems ( j -  m 2 0), for instance, one gets the following expressions of the 
successive normalised perturbed eigenfunctions in terms of the normalised perturbed 
key function: 

$!N)  = Q.$(,N) 
11-1 1 1 1  

(39) $;f\ = Q j - l Q j ( l + h , - l ) $ , j  ( N )  
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Finally, any 
perturbed key function +;;) by the expression 

normalised perturbed function is given in terms of the normalised 

where 

t,,, = min( - 
ti+*-2* 

The +;yN) functions are easily obtained from equation (33) for class I ( E  = + 1 )  or 
from equation (34) for class I1 ( E  = - 1). One gets 

After substituting for the Q, and h, functions from equation (37) and retaining the 
terms up to q N ,  any normalised perturbed eigenfunction +;”’ is merely obtained, for 
each type of factorisation, in terms of the specific zero-order key eigenfunction. 

For the ‘radial’ factorisation types (C, D and F) which have been considered, the 
expression (40)  of any perturbed eigenfunction can be viewed as the known zero-order 
key function multiplied by a polynomial of x :  

For type F 

u o = m - j  U,,, = S N  + 1 p = m ( m + l )  

For type C ( b  > 0 )  

u o = m - j  U,,, = 2 S N  + 2 p = 2 m + l  

For type D ( b  > 0)  

uo=o U m a x  = 2 s ~  p = 2 m + 1  
b 1/4 =(--) e x p ( - d 2 / 2 b ) e x p ( - b x 2 / 2 - d x ) .  

(42)  

(43) 

(44) 

(45) 

4. Closed form expressions of matrix elements between perturbed eigenfunctions 

For the radial factorisation types (B, C, D and F) which have been considered, we have 
now at our disposal closed form expressions of any normalised perturbed 
eigenfunction. Now let us consider the genral matrix element of a Hermitian operator 
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Then, one gets the following expressions of the factorisation instruments: 

with 

a l (m)  = Qm [b3(15m4+Sm2+p2 - 12pm2) +4b2(2m2 -- p )  +ib: (3m4+ d- p2) ]  

(;/2(m) =:m [2b3(5m2- 3p)+4b2+ m2b:] 

a 3 ( m )  = +nib3. 

Hence, one obtains the expressions of and Q, in terms of the b,: 

Tm = [ T ( j +  l ) - T ( m ) y  

B a ) + B l x  4- Bzx2+B3x3] (51) 

with, when introducing the shortened notation J = j + 1, 

Bo= 1+ q & J Z m 2 +  q2&J2m2{7(J4+J2m2+ m4)(5b3-l-4b3 

+ 5 ( J 2 +  m2)[(5-6p)b3+4b2fib:] 
2 7 2 2  2 + 3p2(b3  -4b:) - 6/..~(b3 + 2b2)+ bl +xblJ m } 

B1= q ~ ~ 1 + r 1 2 $ { 3 ( m 4 + 2 m 3 + 4 m 2 $ a m + 1 ) ( 5 b 3 + ~ b : )  

+ ( m 2 +  m +  I)[(s- 1'bp)b3+86,+$b:] 

+ p 2 ( b ,  - ib:)  - 4pb2+ 3b:J2m2)  

B2 = 7' i [ ( m 2 +  m + 1)(10b3+ b:)+4b,---6pub3] 
2 1  B3=q jb3. 

Now, the expression (40): with E = + 1 (class I), gives the expression of any normalised 
eigenfunction I + $ ~  of the wave equation (47) in terms of the key function t,bii and then 
(equation 41) in terms of the zero-order key function +;;)~ 

Let us apply these results to the deterinination of the generalised central field 
energies and wavefunctions. After introducing the usual quantum numbers (n ,  I )  and 
after setting rR,,l(r) = Z1'2(Cj.,n(x; p = I ( l +  1)), Z r =  x, the Coulonibicprobleni is a type 
F (class I) case with j = n - 1 and m = 1. One finds, for instance, 

R d r )  = R \:'[ 1 - $(3b, + 1 1 h2 + ?-b3 + 5 b:) + $(b ,  + 2 b2 t- 5b3 - $:j(Zr)2 

+&(4b2+ lob3+ b f ) ( ~ r ) ~  + i ( b 3 + $ : ) ( ~ r ) 4 ]  

I )  = l?;: [ 1 -. 15bl- 20(8b2 -t- 77b3 + T b t )  + 3(&, + b2 + 7h3 - $b:)(Zr)2 

+ f ( b 2 - t  7b3+ b : ) ( ~ r ) ~ + a ( 5 , + ~ b : ) ( ~ r j ~ ]  

R.3d(r) = R'::'[1-~(4bl+- 84b2+ 1 5 3 9 b 3 + ~ - b l ) + ~ ( b 1 +  459 2 l 2 b 2 + l 6 2 b 3 - ~ b : , ( 2 r j 2  

++(b2 + y b 3  + + i ( b ,  + i b : ) ( ~ r ) ~ j  
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4 

RZS(r) = R;: A,(Zr)” 
u = - 1  

with 

The zero-order key functions are the well-known normalised hydrogenic key functions, 
with m = j + I = n - 1 ,  

From (29) and (49) ,  one gets the following analytical expression of the generalised 
central field associated energies: 

2E = - Z 2  ~ + ~ b 1 ( 3 n 2 - A ) + g b 2 n 2 ( 5 n 2 - 3 A  +1) 
Id (: 

1 +ib3n2[ - 35n4+ 5n2(5 -6A) - 3A(2 - h)]+&b:n2(7n4+ 5n2-  3A2) 

with A = I ( / +  1). 

wavefunctions is easily obtained: 
A closed form expression for matrix elements of r k  between generalised central field 

(nIlrkln‘I‘) = AL”’(n, I)ALN)(n‘, I‘)(rk+u+u’) 
u,u’ 

where I -n  + 1 S U S S N +  1 , I ’ -  n’+ 1 S U ’ S  SN + 1 and U + u ’ 4 S N  + 1. Theshortened 
notation ( r k + u + u ’ )  stands for the matrix element between the hydrogenic key functions: 

One gets 

n+n’+k+u+u’+ l  

X ( X )  n+n‘ 
( n  +n’+ k + U +U’)! 

This key matrix element vanishes unless n + nr + k + U + U ’ >  0. Owing to the condition 
U + U ’ S  S,  + 1 with SN = NSl + N - 1, one obtains for the generalised central field 
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problem the following selection rule: 

- k c n + n ’ + S ,  + 1. 

One could question if the application of the well-known Pasternack-Sternheimer 
(1962) selection rules, 2 s  - ( k + u + u ’ ) c l - I ‘ + l ,  n = n ’ ,  1>1’ and 1+1’+ 
( k  + U + U’) + 2 3 0, for matrix elements of between hydrogenic radial functions 
can give an additional selection rule for n = n’. Since ( r k + u + u ’ )  is a matrix element 
between ‘key’ hydrogenic functions it follows therefrom that. n = n’+ I = 1‘. 
Consequently, only the second Pasternack-Sternheimer rule holds but it is merely a 
particular case of the selection rule already found. 

6. Conclusion 

The perturbed ladder operator method can be viewed as an improved hybrid of the 
factorisation and perturbation schemes which combines the advantageous features of 
the two schemes. Finally, all these features are essentially embedded in the factorisa- 
tion and the ladder perturbed functions. Once these ‘factorisation instruments’ have 
been expressed in terms of the physical data of the problem, one obtains directly, 
without prior knowledge of the unperturbed spectrum and without having to calculate 
any matrix element, analytical expressions of the eigenvalues in terms of the quantum 
numbers, for any order of the perturbation. In the present paper, it has been shown how 
the use of the three-terms recurrence relation between perturbed eigenfunctions allows 
a straightforward determination of any perturbed eigenfunction as well as closed form 
expressions of any matrix element of a Hermitian operator between these functions in 
terms of one unique integral. One may add that the treatment of the Nth order of the 
perturbation is not significantly more difficult than the first order. As a particular 
illustrative example, results are given for the generalised central field problem (pertur- 
bed type F). The same treatment is relevant for studying the Stark effect either by 
considering it as a ‘perturbed type F’ or, after some manipulations (Hehenberger et a1 
1974), by considering it as a ‘perturbed type C’. The perturbed ladder procedure works 
nicely also for calculating rotation-vibration wavefunctions and intensities of diatomic 
molecules. For instance, the diatomic nuclear equation, when it involves a perturbed 
Morse potential with additional perturbations describing rotational energy (Huffaker 
1976), is relevant to the ‘perturbed type B’ treatment while, when it involves a Dunham 
potential (Dunham 1932, Kilpatrick 1959), the ‘perturbed type D’ (anharmonic 
oscillator) scheme applies. Results of this last investigation will be given elsewhere. 
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